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COMMENT 

On the classical mechanics of a non-relativistic superparticle 

B AnevatS, P Boshilov9 and D Stoyanov§ 
t International Centre for Theoretical Physics, Miramare, Trieste, Italy 
P Institute of Nuclear Research and Nuclear Energy, Sofia, Bulgaria 

Received 27 April 1987 

Abstract. A classical Lagrangian function for a system with even and odd degrees of 
freedom is proposed and studied. The quantisation is performed without the appearance 
of non-trivial constraints and i t  leads to the previously defined supersymmetric Schrodinger 
equation. 

The most significant property of the three-dimensional non-relativistic supersymmetry 
is the appearance of Lorentz (e.g., relativistic) symmetry as a dynamical symmetry. In 
a recent paper (Sokatchev and Stoyanov 1986) a supersymmetrically invariant equation 
has been proposed in a form analogous to the quantum mechanical Schrodinger 
equation. It has been defined by the requirement to remain invariant under the action 
of a three-dimensional superalgebra which contains the Euclidean group rather than 
the Lorentz group. In this equation which we call a supersymmetric Schrodinger 
equation the time variable plays the role of a parameter. It turns out that the equations 
of motion for the bosonic and the fermionic components of the superwavefunction 
are the relativistically invariant Klein-Gordon and Dirac equations respectively. Thus 
Lorentz invariance appears as a dynamical symmetry of the considered supersymmetric 
system as a quantum mechanical one. 

This property of the non-relativistic supersymmetry also survives in cases with 
interaction. As is shown (Aneva et a1 1987) one can redefine the supersymmetric 
Schrodinger equation in such a way that it contains different interaction terms and 
still remains invariant under supersymmetry. 

As is seen from the paper by Sokatchev and Stoyanov (1986) the supersymmetric 
Schrodinger equation has in fact been posrulated. But on the other hand, we can try 
to obtain the same equation by quantising a suitable classical mechanics system which 
together with the usual even dynamical variables (the canonically conjugated coordin- 
ates and momenta) also includes odd variables. The quantisation of the classical 
system in our opinion should be done in such a way that no non-trivial constraints 
appear. 

In the present paper we propose a solution to this problem defining a proper 
classical Lagrangian function for an object with even and odd degrees of freedom 
which we call a non-relativistic superparticle. From this Lagrangian we find with the 
help of the usual commutation relations between the coordinates and  the momenta 
that it leads to the Hamiltonian operator in the supersymmetric Schrodinger equation. 
The main result of this investigation is that the general solution of the classical 
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superparticle equations of motion contains harmonic terms with Grassmann (or  nil- 
potent) amplitudes. This means actually that the motion of the superparticle should 
not be interpreted as free. Nevertheless, we find after quantisation that the supersym- 
metric Schrodinger equation describes free superfields. 

For completeness we begin with the discussion of the above-mentioned non- 
relativistic superalgebra. It is the supersymmetric extension of the Lie algebra of the 
three-dimensional Euclidean group T3 x O(3) or SU(2). It contains the following even 
generators: the three O(3) generators I k ,  and the three translations Pk, ( k  = 1,2,3) ;  
the odd  generators Qm, a = 1 , 2  form an SU(2) complex spinor. These generators 
satisfy the following commutation and anticommutation relations: 

Here ak denote the Pauli matrices, is the fully antisymmetric tensor = 1);  
E = ia2 is the two-dimensional metric tensor e ' =  -1. With the help of E,+ we raise 
and lower the spinor indices. The constant N remains unspecified. 

As usual the representation of this superalgebra is constructed in the superspace 
( x A ,  OQ) where xk are the coordinates of the three-dimensional Euclidean space R' 
and 6, are two-component (complex) spinors, Grassmann variables 

{ e a ,  $1 = 0 a, p = 1,2.  (2)  

The generators fh and Qct are realised as differential operators in the superspace: 

a 
d& 

a A 
Qu =i-+i-(a @)<,PA. 

PA = -i- k = l , 2 , 3  

ae 2 

(3) 

A spinor covariant derivative 2<, can be defined 

which satisfies the following anticommutation relations: 

{ g,, , pp } = -ut.( (T ) <,afA {Q", 9 0 1  = 0. 

The operator 

plays the role of a kinetic energy operator, i.e. a supersymmetric Hamiltonian operator 
in the free supersymmetric Schrodinger equation (Sokatchev and Stoyanov 1986, Aneva 
et al 1987). In the quantum case i t  has the form: 

4 4i 
"t - ,z K (  P, 7r, e )  =,7r1'7T,, + -7rTTIc(aho) , ,Pk  - P'O"O,, ( 7 )  
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where P k  = -id/dxk, T =  = -id/ae, are differential operators. In the superspace we 
consider, the quantities ( P k ,  x,) and ( T",  6,) are two pairs of canonically conjugated 
elements which satisfy commutation and anticommutation relations respectively 

k [ pk, x,] = -is, 
{no, e,} = -is;. 

Now we want to discuss the classical mechanics of a superparticle. Having in mind 
the operator K (  P, T ,  0 )  we are ready to reconstruct an expression for the classical 
Hamiltonian, which after quantisation will lead to our supersymmetric Hamiltonian 
(7). We postulate 

4 4i 
.k'* "V 

H,, = - n " ~ ~  + - 7~~ ( c r k O )  "pk - p 2  0" 8,. ( 9 )  

The coordinates (xk, p ' )  and (e,, no) are the canonically conjugated dynamical vari- 
ables in the Hamiltonian formulation of a classical mechanics with bosonic and 
fermionic degrees of freedom. They satisfy the corresponding Poisson brackets 

which after quantisation will go into the commutation and anticommutation relations 
(8)  according to the rule 

commutator 
'{ ' p +  anticommutator. 

We use the following definition of Poisson brackets in the presence of anticommuting 
variables (Casalbuoni 1976, Fradkin et a1 1978): 

where E and 0 denote even and odd variables respectively. To describe the classical 
mechanics of a superparticle we have to discuss the Hamiltonian equations of motion 
which describe the time evolution of the dynamical variables qA and p4. In  the presence 
of Grassmann variables these equations have the form (Maries and Zumino 1985) 

Hc, p4 = -- 
a q A  

In  our case we have, respectively, 

(12)  
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After substituting the expression for H,, these equations become: 

pk  = o  i k  = (4i/X).ira(ake),  - 2 p k e u e ,  

8 4i 
K 

6 .m =-- KZ.ir, - - - b f e ) , P ,  

4i 
x e, = - - ( a ' ? r ) , p , + 2 p ~ O , .  

The system of differential equations (14) can be easily solved and its general solution 
is found to be 

with x;, P k ,  p, ,  5, arbitrary ( p ,  5 Grassmann) constants fixed by the initial conditions. 
It is evident from the expressions ( 1 5 )  that q ( t )  is a superposition of the general 
solution of the equation of motion of a free particle and nilpotent harmonic terms. 
We observe the similarity of the form of this solution with a given mode of the string. 
We note also that the solution for e,(!) does not contain a term linear in time. As is 
readily seen from the Hamiltonian equations the quantity P k  is a constant of motion. 
Writing the classical Hamiltonian function in the form 

( 1 6 )  2H, ,  = earTT, + xkpk 

we can easily convince ourselves that 

dH,,/dt = 0. 

The same is valid for the spinor quantity 

Thus in the classical case three quantities are constants of motion: P k ,  H and 0,. In  
the quantum case the first two remain automatically constants of motion, but one has 
to choose only one of the Q, since they do not anticommute. 

Now we are going to construct a Lagrangian L(qA, &), q A  = (xh, e,) for a super- 
particle as a function of the coordinates qa and the velocities gA from the requirement 
for superinvariance. Under the transformation generated by Q, (with a parameter x " )  
the coordinates xk and 8, transform as follows: 

As is readily seen the quantity 
transformation (19). Out of xk, e,, xk and e,  we can construct the quantity 

is itself an  invariant under the supersymmmetry 

(20) 
x .  
2 

Yk=Xk+i-eUkke. 

It is easy to show that this quantity also remains invariant under the supersymmetry 
transformation (19). 
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We are now ready to write the most general Lagrangian function invariant under 
the transformations generated by our superalgebra. It will be a polynomial of Yk and 
will contain a term bob, 

L( 9, 4) = ak Y k  + b YE + hea e,. (21) 

A simple dimensional analysis shows that the constant b in (21) should have the 
dimension of mass ( [ 1 ] - ' ) .  But our initial quantum theory does not contain dimensional 
parameters and since this discussion is justified, namely by the correspondence of the 
Lagranian (21) to the already found quantum Hamiltonian, we conclude that a term 
- b y :  should not be included in the Lagrangian function. 

We thus propose 

to be the Lagrangian of a free superparticle and we are going to show that this 
Lagrangian (with the choice of A = --Au+"') leads to our classical Hamiltonian (9). This 
Lagrangian will describe the dynamics of a massless superparticle since it does not 
contain a mass term. 

We first define the conjugated momenta 

Then we can pass to the Hamiltonian formulation of the superparticle dynamics 
according to the well known general rules 

H = i A p A  + euro  - L. (24) 

Evidently the Lagrangian L(9, 4) given by (22) is such that from the definition of the 
momenta a set of algebraic constraints follows 

X A = ( p A + a A ) = O  IIA = 0. (25) 

It is easy to show that nk cannot be expressed by any other of the dynamical variables. 
Thus the constraints, although not being primary, are identically vanishing 

p h  = -ah IIA = 0. (26) 

These relations are actually trivial-in fact ak plays the role of a Lagrangian multiplier. 
Expressing 4, from the third equation in (23) and substituting into 

, ,  ' H = x A p A  + O"..rr,, - L = - ,\,$'-O''O, 

we obtain 

H = (4/u$*2)7r'r7rcr + ( 4 i / u t 3 ) 7 r 1 r ( ~ ' ~ ) c , p ,  -P'O"O, ,  

which coincides with the expression for our classical Hamiltonian. 
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